
Trace (linear algebra)
In linear algebra, the trace of an n-by-n square matrix A is defined to be the sum of the elements on the main diagonal (the diagonal
from the upper left to the lower right) of A, i.e.,

where aii denotes the entry on the ith row and ith column of A. The trace of a matrix is the sum of the (complex) eigenvalues, and it is
invariant with respect to a change of basis. This characterization can be used to define the trace of a linear operator in general. Note
that the trace is only defined for a square matrix (i.e., n × n).

The trace (often abbreviated to "tr") is related to the derivative of the determinant (see Jacobi's formula).
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.

The trace is a linear mapping. That is,

.

for all square matrices A and B, and all scalars c.

A matrix and its transpose have the same trace:

.

This follows immediately from the fact that transposing a square matrix does not affect elements along the main diagonal.

The trace of a product can be rewritten as the sum of entry-wise products of elements:

.

This means that the trace of a product of matrices functions similarly to a dot product of vectors. For this reason, generalizations of
vector operations to matrices (e.g. in matrix calculus and statistics) often involve a trace of matrix products.

For real matrices, the trace of a product can also be written in the following forms:

(using the Hadamard
product, i.e. entry-wise
product).

(using the vectorization
operator).

The matrices in a trace of a product can be switched without changing the result: If A is an m × n matrix and B is an n × m matrix,
then

.[1]

More generally, the trace is invariant under cyclic permutations, i.e.,

.

This is known as the cyclic property.

Note that arbitrary permutations are not allowed: in general,
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.

However, if products of three symmetric matrices are considered, any permutation is allowed. (Proof: tr(ABC) = tr(AT BT CT) =
tr(AT(CB)T) = tr((CB)TAT) = tr((ACB)T) = tr(ACB), where the last equality is because the traces of a matrix and its transpose are
equal.) For more than three factors this is not true.

Unlike the determinant, the trace of the product is not the product of traces, that is:

What is true is that the trace of the Kronecker product of two matrices is the product of their traces:

.

The following three properties:

,

characterize the trace completely in the sense that follows. Let f be a linear functional on the space of square matrices satisfying
f(x y) = f(y x). Then f and tr are proportional.[2]

The trace is similarity-invariant, which means that A and P−1AP have the same trace. This is because

.

If A is symmetric and B is antisymmetric, then

.

The trace of the identity matrix is the dimension of the space; this leads to generalizations of dimension using trace. The trace of an
idempotent matrix A (for which A2 = A) is the rank of A. The trace of a nilpotent matrix is zero.

More generally, if f(x) = (x − λ1)d1···(x − λk)dk is the characteristic polynomial of a matrix A, then

.

When both A and B are n-by-n, the trace of the (ring-theoretic) commutator of A and B vanishes: tr([A, B]) = 0; one can state this as
"the trace is a map of Lie algebras  from operators to scalars", as the commutator of scalars is trivial (it is an abelian Lie
algebra). In particular, using similarity invariance, it follows that the identity matrix is never similar to the commutator of any pair of
matrices.

Conversely, any square matrix with zero trace is a linear combinations of the commutators of pairs of matrices.[3] Moreover, any
square matrix with zero trace is unitarily equivalent to a square matrix with diagonal consisting of all zeros.

The trace of any power of a nilpotent matrix is zero. When the characteristic of the base field is zero, the converse also holds: if 
 for all , then  is nilpotent.

The trace of a Hermitian matrix is real, because the elements on the diagonal are real.

The trace of a projection matrix is the dimension of the target space.
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.

Note that  is idempotent, and more generally the trace of any idempotent matrix equals its rank.

Expressions like tr(exp(A)), where A is a square matrix, occur so often in some fields (e.g. multivariate statistical theory), that a
shorthand notation has become common:

.

This is sometimes referred to as the exponential trace function; it is used in the Golden–Thompson inequality.

Given some linear map f : V → V (where V is a finite-dimensional vector space) generally, we can define the trace of this map by
considering the trace of matrix representation of f, that is, choosing a basis for V and describing f as a matrix relative to this basis, and
taking the trace of this square matrix. The result will not depend on the basis chosen, since different bases will give rise to similar
matrices, allowing for the possibility of a basis-independent definition for the trace of a linear map.

Such a definition can be given using the canonical isomorphism between the space End(V) of linear maps on V and V ⊗ V∗, where
V∗ is the dual space of V. Let v be in V and let f be in V∗. Then the trace of the indecomposable element v ⊗ f is defined to be f(v);
the trace of a general element is defined by linearity. Using an explicit basis for V and the corresponding dual basis for V∗, one can
show that this gives the same definition of the trace as given above.

If A is a linear operator represented by a square n-by-n matrix with real or complex entries and if λ1, ..., λn are the eigenvalues of A
(listed according to their algebraic multiplicities), then

.

This follows from the fact that A is always similar to its Jordan form, an upper triangular matrix having λ1, ..., λn on the main
diagonal. In contrast, the determinant of A is the product of its eigenvalues; i.e.,

.

More generally,

.

The trace corresponds to the derivative of the determinant: it is the Lie algebra analog of the (Lie group) map of the determinant. This
is made precise in Jacobi's formula for the derivative of the determinant.
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As a particular case, at the identity, the derivative of the determinant actually amounts to the trace: . From this (or from the
connection between the trace and the eigenvalues), one can derive a connection between the trace function, the exponential map
between a Lie algebra and its Lie group (or concretely, the matrix exponential function), and the determinant:

.

For example, consider the one-parameter family of linear transformations given by rotation through angle θ,

.

These transformations all have determinant 1, so they preserve area. The derivative of this family at θ = 0, the identity rotation, is the
antisymmetric matrix

which clearly has trace zero, indicating that this matrix represents an infinitesimal transformation which preserves area.

A related characterization of the trace applies to linear vector fields. Given a matrix A, define a vector field F on ℝn by F(x) = Ax.
The components of this vector field are linear functions (given by the rows of A). Its divergence div F is a constant function, whose
value is equal to tr(A).

By the divergence theorem, one can interpret this in terms of flows: if F(x) represents the velocity of a fluid at location x and U is a
region in ℝn, the net flow of the fluid out of U is given by tr(A) ⋅ vol(U), where vol(U) is the volume of U.

The trace is a linear operator, hence it commutes with the derivative:

The trace of a 2-by-2 complex matrix is used to classify Möbius transformations. First the matrix is normalized to make its
determinant equal to one. Then, if the square of the trace is 4, the corresponding transformation is parabolic. If the square is in the
interval [0,4), it is elliptic. Finally, if the square is greater than 4, the transformation is loxodromic. See classification of Möbius
transformations.

The trace is used to define characters of group representations. Two representations  of a group G are
equivalent (up to change of basis on V) if  for all g ∈ G.

The trace also plays a central role in the distribution of quadratic forms.

The trace is a map of Lie algebras  from the Lie algebra gln of operators on a n-dimensional space (n × n matrices) to the
Lie algebra k of scalars; as k is abelian (the Lie bracket vanishes), the fact that this is a map of Lie algebras is exactly the statement
that the trace of a bracket vanishes:

.

The kernel of this map, a matrix whose trace is zero, is often said to be traceless or tracefree, and these matrices form the simple Lie
algebra sln, which is the Lie algebra of the special linear group of matrices with determinant 1. The special linear group consists of
the matrices which do not change volume, while the special linear Lie algebra is the matrices which infinitesimally do not change
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volume.

In fact, there is an internal direct sum decomposition  of operators/matrices into traceless operators/matrices and
scalars operators/matrices. The projection map onto scalar operators can be expressed in terms of the trace, concretely as:

.

Formally, one can compose the trace (the counit map) with the unit map  of "inclusion of scalars" to obtain a map 
 mapping onto scalars, and multiplying by n. Dividing by n makes this a projection, yielding the formula above.

In terms of short exact sequences, one has

which is analogous to

for Lie groups. However, the trace splits naturally (via  times scalars) so , but the splitting of the determinant would
be as the nth root times scalars, and this does not in general define a function, so the determinant does not split and the general linear
group does not decompose: 

The bilinear form

is called the Killing form, which is used for the classification of Lie algebras.

The trace defines a bilinear form:

(x, y square matrices).

The form is symmetric, non-degenerate[4] and associative in the sense that:

.

For a complex simple Lie algebra (e.g., ), every such bilinear form is proportional to each other; in particular, to the Killing form.

Two matrices x and y are said to be trace orthogonal if

.

For an m-by-n matrix A with complex (or real) entries and * being the conjugate transpose, we have

with equality if and only if A = 0. The assignment
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yields an inner product on the space of all complex (or real) m-by-n matrices.

The norm derived from the above inner product is called the Frobenius norm, which satisfies submultiplicative property as matrix
norm. Indeed, it is simply the Euclidean norm if the matrix is considered as a vector of length m n.

It follows that if A and B are real positive semi-definite matrices of the same size then

.[5]

The concept of trace of a matrix is generalized to the trace class of compact operators on Hilbert spaces, and the analog of the
Frobenius norm is called the Hilbert–Schmidt norm.

If  is trace-class, then for any orthonormal basis , the trace is given by

and is finite and independent of the orthonormal basis.[6]

The partial trace is another generalization of the trace that is operator-valued. The trace of a linear operator  which lives on a
product space  is equal to the partial traces over  and : . For more properties and
a generalization of the partial trace, see the article on traced monoidal categories.

If A is a general associative algebra over a field k, then a trace on A is often defined to be any map tr: A → k which vanishes on
commutators: tr([a, b]) = 0 for all a, b in A. Such a trace is not uniquely defined; it can always at least be modified by multiplication
by a nonzero scalar.

A supertrace is the generalization of a trace to the setting of superalgebras.

The operation of tensor contraction generalizes the trace to arbitrary tensors.

We can identify the space of linear operators on a vector space V, defined over the field F, with the space , where 
. We also have a canonical bilinear function  that consists of applying an element w* of V*

to an element v of V to get an element of F, in symbols . This induces a linear function on the tensor product
(by its universal property) , which, as it turns out, when that tensor product is viewed as the space of operators, is
equal to the trace.

This also clarifies why  and why , as composition of operators (multiplication of
matrices) and trace can be interpreted as the same pairing. Viewing , one may interpret the composition map 

 as

coming from the pairing  on the middle terms. Taking the trace of the product then comes from pairing on the outer
terms, while taking the product in the opposite order and then taking the trace just switches which pairing is applied first. On the
other hand, taking the trace of A and the trace of B corresponds to applying the pairing on the left terms and on the right terms (rather
than on inner and outer), and is thus different.
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In coordinates, this corresponds to indexes: multiplication is given by , so  and 

 which is the same, while , which is different.

For  finite-dimensional, with basis  and dual basis , then  is the ij-entry of the matrix of the operator with respect
to that basis. Any operator  is therefore a sum of the form . With  defined as above, . The
latter, however, is just the Kronecker delta, being 1 if i = j and 0 otherwise. This shows that  is simply the sum of the coefficients
along the diagonal. This method, however, makes coordinate invariance an immediate consequence of the definition.

Further, one may dualize this map, obtaining a map . This map is precisely the inclusion of scalars,
sending 1 ∈ F to the identity matrix: "trace is dual to scalars". In the language of bialgebras, scalars are the unit, while trace is the
counit.

One can then compose these, , which yields multiplication by n, as the trace of the identity is the dimension of the
vector space.

Trace of a tensor with respect to a metric tensor
Characteristic function
Field trace
Golden–Thompson inequality
Specht's theorem
Trace class
Trace inequalities
von Neumann's trace inequality

1. This is immediate from the definition of the matrix product:

.

2. Proof:

 if and only if  and  (with the standard basis ),

and thus

.

More abstractly, this corresponds to the decomposition , as tr(AB) = tr(BA) (equivalently, 
) defines the trace on sln, which has complement the scalar matrices, and leaves one degree of freedom: any such
map is determined by its value on scalars, which is one scalar parameter and hence all are multiple of the trace, a
non-zero such map.

3. Proof:  is a semisimple Lie algebra and thus every element in it is a linear combination of commutators of some
pairs of elements, otherwise the derived algebra would be a proper ideal.

4. This follows from the fact that  if and only if 

5. Can be proven with the Cauchy–Schwarz inequality.

6. Teschl, G. (30 October 2014). Mathematical Methods in Quantum Mechanics. Graduate Studies in Mathematics. 157
(2nd ed.). American Mathematical Society. ISBN 1470417049.
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